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Summary. A map of the space of conformations of the barbaralyl cation, C9 H+, is 
studied with an angular measure for the distance between equivalent structures and 
their intermediates, the transition states. The subgroup/coset decomposition of 
the symmetric group of 9 objects is analysed in order to develop the geometrical 
picture of the rearrangement space. 
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Introduction 

Determinations of the angular displacements in a hyperspherical formulation are 
presented for the barbaralyl cations. They are based on the accurate ab initio 
calculations by Cremer et al. [1]. A numerical measure based on the principle of 
least motion is used to form a characterisation of the pathways and to estimate the 
shape of the potential energy hypersurface. 

Intriguing cage structures are exhibited by many hydrocarbons and their ions 
and the barbaralyl cation with nine CH-groups is a particularly challenging case. It 
has been examined in detail by experimental [2] and theoretical ['3] investigators 
and a good appreciation of the rearrangement reactions has been obtained. The 
present effort is directed towards an exploration of the advantages offered by the 
hyperspherical picture where different conformations correspond to different direc- 
tions in a multidimensional space and where exchange processes between equiva- 
lent atoms and functional groups occur as permutations of particle labels. A given 
equilibrium conformation of the barbaralyl cation has formally (9!) 2 other struc- 
tures which are of the same geometry since carbon and hydrogen atoms may be 
renumbered. There are 54 Cartesian coordinates to specify and six of these may be 
chosen freely as the centre-of-mass position and the angles of orientation of the 
reference frame. The resulting 48-dimensional subspace might then be partitioned 
into Voronoi cells associated with each particular structure. It is then of concern to 
learn about the neighbours of a particular cell in order to apply the principle of least 
motion which enunciates that a chemical reaction proceeds in such a way that the 
atoms move in the least possible way and that the electronic structure wave 
function remains similar throughout the rearrangement [4, 5]. 
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Details on the choice of coordinates and the determination of the least distance 
are offered in the next section of this paper. The third section is devoted to an 
examination of a particular set of equilibrium structures with six members which 
are transformed amongst each other under the action of the elements of a subgroup 
of the full symmetric group. We proceed in the fourth section to explore the 
neighbours to the previously defined set of structures. Conclusions are presented in 
the last section. 

Coordinates 

Particles with masses and positions are described by means of a set 
{(mj, ri)IJ = 1, 2, . . . ,  N} which are transformed to a mass weighted form, 

m f ~ .  N 
x~=rj , j = I, 2, ... , N; M =  ~ rnj 

j = l  

and supplied with a constraint 

O =  2 mjrj= M Xj 
j = l  j = l  

which serves to maintain the origin at the centre-of-mass. It is advantageous in this 
work to employ this constraint instead of a transformation to Jacobi vectors or 
some other set of independent variables. 

The rotational freedom in the choice of coordinates will be exploited through 
the requirement that each conformation is given in a principal axes frame [6] so 
that for any three-vector a it holds that 

N 3 
I(a) = ~, la×xil2 = ~ Ika~,. 

j = l  k=l  

Permutations of labels of equivalent particles leave this form invariant and the sum 
of the principal values is rotationally invariant and provides a measure of the size 
of the system. The hyperradius q for a given set of coordinates is defined as the 
positive root  of the equation 

N 3 

q2= E Ixjl ~ =½ Z Ik, 
j = l  k=l  

A rotated frame, related to the principal axes frame by the axis of rotation n and the 
angle of rotation co, gives the coordinates 

xj(co;n) =xjcosco  + n(n.xj)2sin 2 0)/2 + (n xxj)sinm; Vj 

and it should be recognised that each rotation gives an identical conformation. 
Two distinct conformations obtain when no proper rotation can bring them to 
cover one another perfectly. A rotationally invariant measure for the distance 
between two structures is given as 

N 
d~ = min ~ Ix 7 --x] (co;n)l 2 

co; n j=~l 
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and an angular distance between hyperspherical directions follows as 

~o~p = arccos .q~ + q~ -- d~ 
2 q~ q~ j "  

This measure was used with advantage to analyse an anomalous isotopic effect in 
a rearrangement reaction leading to phenalene [7] and to give a preliminary 
exploration of the barbaralyl cation dynamics [3]. 

Equilibrium structures in C9 H+ 

Accurate ab initio calculations [1], including perturbation theory adjustments, give 
an equilibrium, minimum electronic energy structure with the representation given 
in Fig. 1 as a polyhedron with two different, isosceles triangular and three irregular 
hexagonal faces. A reflection plane is the only symmetry element, but this shape is 
slightly distorted from a form with D3h symmetry. The proper rotations of this 
group, the subgroup Da, are seen to be isomorphic to the subgroup of the 
symmetric group $9 consisting of the substitutions 

G; {e, a = (128)(379)(465), a 2, b = (15)(26)(37)(48)(9), ba, ba 2 } 

with e as the identity, a an element of order three, b an element of order two, and 
the relation that ab = ba 2. Calculations have also identified a structure with the full 
D3h symmetry [1] as a local electronic energy minimum at some 10 milliHartree 
(mH) above the absolute minimum. 

The optimal Dab structure occurs at an hyperradius of 1.663 bohr and the six 
minima at 1.706 bohr. These have a common angular distance from the D3h form 
of 7.92 ° . Distances between the minima are obtained from the formula 

N 
d2(9) =min  ~' ]x~-x~j(o~;n)f 2 

o o ; n  j = l  

N 

=rain ~ IXhj--Xh-lgj(o~;n)[2; Vh,  g ~ G c S 9 .  
f o ; n  j =  1 

and correspondingly one finds the angles given by 

g a, a 2 b ba, ba 2 

cn (9) 13.25° 12.74° 10.41 ° 

It is clear that the six structures span a six-dimensional subspace of the reduced 
space of 48 remaining dimensions. The D3h vector defines a seventh direction 
which is not contained in the subspace spanned by the six. 

Transition state structures 

Experimental studies have shown [2] that there is a rapid rearrangement at low 
temperatures among the six structures which were defined in the previous section. 
Higher temperatures allow a more extended set of rearrangements showing that 
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Fig. 1. Skeleton representation of the barbaralyl 
cation C9H~- with enumeration of groups 

there is an equilibration which involves all nine groups. There are transition state 
structures "between" pairs of equilibrium structures such that they have equal 
distance to both members of a pair of closest neighbours. Twofold elements of the 
permutation subgroup correspond to twofold rotations of the "pseudo-Dab" equi- 
librium form and the transition state geometry exhibits a Cz axis. Each of the 
shortest edges in the six vertex simplex of equilibrium forms has a transition 
structure at a hyperradius of 1.721 bohr and an angular distance from its nearest 
equilibrium geometries of 6.43 °. The second neighbours in the simplex are 13.71 ° 
from the transition state and the last pair is 14.65 ° away. The closest D3h form 
occurs at 9.59 ° . 

Yet another set of structures is derived from the form termed a bifurcation 
transition state which can transform to either one of two equivalent sets of six 
closely located equilibria. The point group symmetry is then C2v and the reflection 
planes provide for a path to another Cz form which cannot be generated from the 
previous one by renumbering the functional groups. An operation is required 
which both permutes the particle labels and reflects the original coordinate system 
in a plane. The C2v conformation has the hyperradius 1.738 bohr and the angular 
distance 4.22 ° from the nearest Cz forms. Direct distances from the Cs forms closest 
to the bifurcation transition state in the two sets are 14.30 ° and 15.23 ° and thus 
somewhat in excess of the distances within each set of six equilibrium structures. 
Figure 2 and Table 1 give the relevant data. 

Each passage way from one set of six forms to another, equivalent, set is 
connected with a cyclic permutation where a ring of six carbon-hydrogen groups is 
"rotated" with regard to an edge of three groups. One of the six possibilities may be 
denoted p = (195678) (2) (3) (4) and the set is then {p, apa 2, a2pa, pS, apSa2, a2pSa}. 
Each member of this set gives a coset, e.g. {p, pa, pa 1, pb, pba, pba z} to the 
subgroup and a new subgroup, appropriate for the new structure. 
{e, pap 5, paZp s, pbp 5, pbap 5, pba2pS}. These considerations demonstrate the con- 
nectivity between the equivalent structures of the barbaralyl cation as they are 
illustrated in Ref. [1]. The permutations a and p are sufficient in order to generate 
the symmetric group $9 through all possible products and consequently we 
conclude that there are pathways from any structure to all others through 
transition states equivalent to those discussed above. The multidimensional nature 
of the situation does not lend itself to any other graphical representation than the 
notion of each subset of six structures being surrounded by six nearest neighbours 
of six structures. The transformations that bring one set into another do not permit 
a sequence of less than six nearest neighbour steps in order to return to the original 
set. Accordingly one cannot look upon the geometry as possible to map on the 
three-dimensional simple cubic lattice with periodic boundary conditions. 
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Fig.  2. I l l u s t r a t i on  o f  re la t ive  pos i t i ons  o f  t w o  sets of  six C c e q u i l i b r i u m  geometr ies ,  e a c h  wi th  its 

nea re s t  D3h- fo rm a n d  a C 2 - t r a n s i t i o n  s ta te  s t r u c t u r e  a s soc i a t ed  wi th  a n  edge  in the  e q u i l i b r i u m  set, as  

well as  the  b i f u r c a t i o n  g e o m e t r y  C2v c o n n e c t i n g  the  t w o  sets. T h e  subse t  of  s t ruc tu re s  r equ i r e  

a m u l t i d i m e n s i o n a l  space  a n d  the  p re sen t  p r o j e c t i o n  on ly  ind ica tes  t h a t  ne i the r  a re  a n y  f o u r  p o i n t s  in 

the  s a m e  p l a n e  n o r  a r e  t w o  sets o f  six C c s t r u c t u r e s  para l le l  in a n y  sense. D i s t a n c e s  reflect o n l y  

a p p r o x i m a t e l y  the  ones  g iven  in  T a b l e  1 

T a b l e  1. A n g u l a r  d i s t ance  b e t w e e n  the  v a r i o u s  s t ruc tu re s  in Fig.  2 

D3h Cs Cs Cs Cs Cs Cs C2 C2v 

c~ 7.92 ° 

c s  7.92 ° 10.41 ° 

c~ 7.92 ° 10.41 ° 13.25 ° 

c~ 7.92 ° 13.25 ° 10.41 ° 12.74 ° 

c~ 7.92 ° 12.74 ° 13.25 ° 13.25 ° 10.41 ° 

c~ 7.92 ° 13.25 ° 12.74 ° 10.41 ° 13.25 ° 10.41 ° 

c 2  9.59 ° 14.65 ° 14.65 ° 13.71 ° 13.71 ° 6.43 ° 

c2v  12.93 ° 17.80 ° 17.80 ° 16.36 ° 16.36 ° 8.95 ° 

c z  15.93 ° 20.60 ° 20.60 ° 18.71 ° 18.71 ° 11.91 ° 

c s  18.35 ° 22.20 ° 23.50 ° 20.59 ° 20.82 ° 14.30 ° 

c s  18.35 ° 23.50 ° 22.20 ° 20.82 ° 20.59 ° 15.23 ° 

c~ 23.72 ° 27.41 ° 28.57 ° 25.19 ° 25.55 ° 20.82 ° 

c s  23.72 ° 28.57 ° 27.41 ° 25.55 ° 25.19 ° 20,59 ° 

c~ 26.02 ° 29 ,80  ° 28.66 ° 28.57 ° 27.41 ° 22.20 ° 

c~ 26 .02  ° 28.66 ° 29.80 ° 27.41 ° 28.57 ° 23.50 ° 

D3h 21.76 ° 26.02 ° 26.02 ° 23.72 ° 23.72 ° 18.35 ° 

6.43 ° 

8.95 ° 4.22 ° 

11.91 ° 8.16 ° 4.22 ° 

15.23 ° 11.91 ° 8.95 ° 

14.30 ° 11.91 ° 8.95 ° 

20.59 ° 18,71 ° 16.36 ° 

20.82 ° 18.71 ° 16.36 ° 

23.50 ° 20.60 ° 17.80 ° 

22.20 ° 20.60 ° 17.80 ° 

18.35 ° 15.93 ° 12.93 ° 

T h e  s e q u e n c e  b e l o w  i s  a n  e x a m p l e  o f  a s i x - s t e p  c y c l e  w h i c h  b r i n g s  a D 3 h - f o r m  

a r o u n d  a s e t  o f  e q u i v a l e n t  f o r m s  w h e r e  t h e  m i d d l e  o n e  r e p r e s e n t s  a s i m p l e  

t r a n s p o s i t i o n  o f  t w o  g r o u p s  o n  a n  e d g e  o f  t h e  s t r u c t u r e .  T h i s  s e e m s  t o  g e n e r a t e  
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structures as close to the starting one as possible, second neighbours at 29.41 ° and 
the "opposite" one at 27.44 ° . 
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A sequence such as generated by p, p2, . . . ,  p5 brings the structure farther away. 

Discussion 

Highly degenerate systems, in the sense that many equivalent conformations are 
accessible, allow for alternative interpretations of the particular rearrangements 
taking place. The early discussions about the competition between Cope rearrange- 
ment, the path through the D3h form for the present ion, and the conclusion about 
the actual path deduced by Ahlberg and his group I-2] illustrates the extensive 
considerations required in ascertaining a result. The present contribution demon- 
strates that the principle of least motion, as implemented here in terms of a numer- 
ical measure of the distance between conformations, applies. A detailed theory of 
the rates requires more information on the potential surface and the permutational 
equivalence between several structures, which implies invariance of the electronic 
potential energy function under the appropriate symmetric group, becomes an 
important aspect in the specification. It is realised that one calculation of the total 
electronic energy for an isolated molecular system defines a manifold of rotation- 
ally equivalent geometries. The presence of identical atoms extends such a calcu- 
lation to a number of these manifolds and it is significant to have means of relating 
these and to find paths in between. Such questions have been addressed by Mezey 
I-8] in somewhat similar terms as used here. 

Actual representations of potential surfaces in many dimensions may be most 
conveniently effectuated through baricentric coordinates in simplexes. This will 
circumvent the need to define internal coordinates in terms of bond distances, bond 
angles and dihedral angles, which often leads to complicated transformations in the 
dynamical formulation. Our case, the barbaralyl cation, has in the centre-of-mass 
system 51 dimensions and 48 rotational invariants. A primitive simplex has 49 
vertices and it may be tempting to consider these as representing one D3h form, its 
six close Ca equilibrium structures, six C 2 transition geometries, six C2v bifurcation 
geometries, another six C2 transition forms and with these twelve Ca equilibria, as 
well as twelve more distant vertices. The difficulty with this enumeration is that the 
distances are computed in a variety of rotated coordinate frames. Pairs of geomet- 
ries can be defined in the same frame at the shortest distance, but when more forms 
are introduced, for instance by permutations of particle labels, each pairwise 
distance requires its own frame. The dynamical consequence of this needs further 
exploration. 
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